SUBROUTINE POLATEV0(IPOPT,KGDSI,KGDSO,MI,MO,KM,IBI,LI,UI,VI, & NO,RLAT,RLON,CROT,SROT,IBO,LO,UO,VO,IRET) !$$$ SUBPROGRAM DOCUMENTATION BLOCK ! ! $Revision: 71314 $ ! ! SUBPROGRAM: POLATEV0 INTERPOLATE VECTOR FIELDS (BILINEAR) ! PRGMMR: IREDELL ORG: W/NMC23 DATE: 96-04-10 ! ! ABSTRACT: THIS SUBPROGRAM PERFORMS BILINEAR INTERPOLATION ! FROM ANY GRID TO ANY GRID FOR VECTOR FIELDS. ! OPTIONS ALLOW VARYING THE MINIMUM PERCENTAGE FOR MASK, ! I.E. PERCENT VALID INPUT DATA REQUIRED TO MAKE OUTPUT DATA, ! (IPOPT(1)) WHICH DEFAULTS TO 50 (IF IPOPT(1)=-1). ! ONLY HORIZONTAL INTERPOLATION IS PERFORMED. ! THE GRIDS ARE DEFINED BY THEIR GRID DESCRIPTION SECTIONS ! (PASSED IN INTEGER FORM AS DECODED BY SUBPROGRAM W3FI63). ! THE CURRENT CODE RECOGNIZES THE FOLLOWING PROJECTIONS: ! (KGDS(1)=000) EQUIDISTANT CYLINDRICAL ! (KGDS(1)=001) MERCATOR CYLINDRICAL ! (KGDS(1)=003) LAMBERT CONFORMAL CONICAL ! (KGDS(1)=004) GAUSSIAN CYLINDRICAL (SPECTRAL NATIVE) ! (KGDS(1)=005) POLAR STEREOGRAPHIC AZIMUTHAL ! (KGDS(1)=203) ROTATED EQUIDISTANT CYLINDRICAL (E-STAGGER) ! (KGDS(1)=205) ROTATED EQUIDISTANT CYLINDRICAL (B-STAGGER) ! WHERE KGDS COULD BE EITHER INPUT KGDSI OR OUTPUT KGDSO. ! THE INPUT AND OUTPUT VECTORS ARE ROTATED SO THAT THEY ARE ! EITHER RESOLVED RELATIVE TO THE DEFINED GRID ! IN THE DIRECTION OF INCREASING X AND Y COORDINATES ! OR RESOLVED RELATIVE TO EASTERLY AND NORTHERLY DIRECTIONS, ! AS DESIGNATED BY THEIR RESPECTIVE GRID DESCRIPTION SECTIONS. ! AS AN ADDED BONUS THE NUMBER OF OUTPUT GRID POINTS ! AND THEIR LATITUDES AND LONGITUDES ARE ALSO RETURNED ! ALONG WITH THEIR VECTOR ROTATION PARAMETERS. ! ON THE OTHER HAND, THE OUTPUT CAN BE A SET OF STATION POINTS ! IF KGDSO(1)<0, IN WHICH CASE THE NUMBER OF POINTS ! AND THEIR LATITUDES AND LONGITUDES MUST BE INPUT ! ALONG WITH THEIR VECTOR ROTATION PARAMETERS. ! INPUT BITMAPS WILL BE INTERPOLATED TO OUTPUT BITMAPS. ! OUTPUT BITMAPS WILL ALSO BE CREATED WHEN THE OUTPUT GRID ! EXTENDS OUTSIDE OF THE DOMAIN OF THE INPUT GRID. ! THE OUTPUT FIELD IS SET TO 0 WHERE THE OUTPUT BITMAP IS OFF. ! ! PROGRAM HISTORY LOG: ! 96-04-10 IREDELL ! 1999-04-08 IREDELL SPLIT IJKGDS INTO TWO PIECES ! 2001-06-18 IREDELL INCLUDE MINIMUM MASK PERCENTAGE OPTION ! 2002-01-17 IREDELL SAVE DATA FROM LAST CALL FOR OPTIMIZATION ! 2007-05-22 IREDELL EXTRAPOLATE UP TO HALF A GRID CELL ! 2007-10-30 IREDELL SAVE WEIGHTS AND THREAD FOR PERFORMANCE ! 2012-06-26 GAYNO FIX OUT-OF-BOUNDS ERROR. SEE NCEPLIBS ! TICKET #9. ! 2015-01-27 GAYNO REPLACE CALLS TO GDSWIZ WITH MERGED VERSION ! OF GDSWZD. ! ! USAGE: CALL POLATEV0(IPOPT,KGDSI,KGDSO,MI,MO,KM,IBI,LI,UI,VI, ! & NO,RLAT,RLON,CROT,SROT,IBO,LO,UO,VO,IRET) ! ! INPUT ARGUMENT LIST: ! IPOPT - INTEGER (20) INTERPOLATION OPTIONS ! IPOPT(1) IS MINIMUM PERCENTAGE FOR MASK ! (DEFAULTS TO 50 IF IPOPT(1)=-1) ! KGDSI - INTEGER (200) INPUT GDS PARAMETERS AS DECODED BY W3FI63 ! KGDSO - INTEGER (200) OUTPUT GDS PARAMETERS ! (KGDSO(1)<0 IMPLIES RANDOM STATION POINTS) ! MI - INTEGER SKIP NUMBER BETWEEN INPUT GRID FIELDS IF KM>1 ! OR DIMENSION OF INPUT GRID FIELDS IF KM=1 ! MO - INTEGER SKIP NUMBER BETWEEN OUTPUT GRID FIELDS IF KM>1 ! OR DIMENSION OF OUTPUT GRID FIELDS IF KM=1 ! KM - INTEGER NUMBER OF FIELDS TO INTERPOLATE ! IBI - INTEGER (KM) INPUT BITMAP FLAGS ! LI - LOGICAL*1 (MI,KM) INPUT BITMAPS (IF SOME IBI(K)=1) ! UI - REAL (MI,KM) INPUT U-COMPONENT FIELDS TO INTERPOLATE ! VI - REAL (MI,KM) INPUT V-COMPONENT FIELDS TO INTERPOLATE ! NO - INTEGER NUMBER OF OUTPUT POINTS (ONLY IF KGDSO(1)<0) ! RLAT - REAL (NO) OUTPUT LATITUDES IN DEGREES (IF KGDSO(1)<0) ! RLON - REAL (NO) OUTPUT LONGITUDES IN DEGREES (IF KGDSO(1)<0) ! CROT - REAL (NO) VECTOR ROTATION COSINES (IF KGDSO(1)<0) ! SROT - REAL (NO) VECTOR ROTATION SINES (IF KGDSO(1)<0) ! (UGRID=CROT*UEARTH-SROT*VEARTH; ! VGRID=SROT*UEARTH+CROT*VEARTH) ! ! OUTPUT ARGUMENT LIST: ! NO - INTEGER NUMBER OF OUTPUT POINTS (ONLY IF KGDSO(1)>=0) ! RLAT - REAL (MO) OUTPUT LATITUDES IN DEGREES (IF KGDSO(1)>=0) ! RLON - REAL (MO) OUTPUT LONGITUDES IN DEGREES (IF KGDSO(1)>=0) ! CROT - REAL (NO) VECTOR ROTATION COSINES (IF KGDSO(1)>=0) ! SROT - REAL (NO) VECTOR ROTATION SINES (IF KGDSO(1)>=0) ! (UGRID=CROT*UEARTH-SROT*VEARTH; ! VGRID=SROT*UEARTH+CROT*VEARTH) ! IBO - INTEGER (KM) OUTPUT BITMAP FLAGS ! LO - LOGICAL*1 (MO,KM) OUTPUT BITMAPS (ALWAYS OUTPUT) ! UO - REAL (MO,KM) OUTPUT U-COMPONENT FIELDS INTERPOLATED ! VO - REAL (MO,KM) OUTPUT V-COMPONENT FIELDS INTERPOLATED ! IRET - INTEGER RETURN CODE ! 0 SUCCESSFUL INTERPOLATION ! 2 UNRECOGNIZED INPUT GRID OR NO GRID OVERLAP ! 3 UNRECOGNIZED OUTPUT GRID ! ! SUBPROGRAMS CALLED: ! GDSWZD GRID DESCRIPTION SECTION WIZARD ! IJKGDS0 SET UP PARAMETERS FOR IJKGDS1 ! (IJKGDS1) RETURN FIELD POSITION FOR A GIVEN GRID POINT ! (MOVECT) MOVE A VECTOR ALONG A GREAT CIRCLE ! POLFIXV MAKE MULTIPLE POLE VECTOR VALUES CONSISTENT ! ! ATTRIBUTES: ! LANGUAGE: FORTRAN 90 ! !$$$ USE GDSWZD_MOD ! IMPLICIT NONE ! INTEGER, INTENT(IN ):: IPOPT(20),IBI(KM),MI,MO,KM INTEGER, INTENT(IN ):: KGDSI(200),KGDSO(200) INTEGER, INTENT(INOUT):: NO INTEGER, INTENT( OUT):: IRET, IBO(KM) ! LOGICAL*1, INTENT(IN ):: LI(MI,KM) LOGICAL*1, INTENT( OUT):: LO(MO,KM) ! REAL, INTENT(IN ):: UI(MI,KM),VI(MI,KM) REAL, INTENT(INOUT):: RLAT(MO),RLON(MO),CROT(MO),SROT(MO) REAL, INTENT( OUT):: UO(MO,KM),VO(MO,KM) ! REAL, PARAMETER :: FILL=-9999. ! INTEGER :: IJX(2),IJY(2),IJKGDSA(20) INTEGER :: MP,N,I,J,K,NK,NV,IJKGDS1 INTEGER, SAVE :: KGDSIX(200)=-1,KGDSOX(200)=-1 INTEGER, SAVE :: NOX=-1,IRETX=-1 INTEGER, ALLOCATABLE,SAVE :: NXY(:,:,:) ! REAL :: CM,SM,UROT,VROT REAL, ALLOCATABLE :: DUM1(:),DUM2(:) REAL :: PMP,XIJ,YIJ,XF,YF,U,V,W REAL :: XPTS(MO),YPTS(MO) REAL :: WX(2),WY(2) REAL :: XPTI(MI),YPTI(MI) REAL :: RLOI(MI),RLAI(MI) REAL :: CROI(MI),SROI(MI) REAL, ALLOCATABLE,SAVE :: RLATX(:),RLONX(:) REAL, ALLOCATABLE,SAVE :: CROTX(:),SROTX(:) REAL, ALLOCATABLE,SAVE :: WXY(:,:,:),CXY(:,:,:),SXY(:,:,:) ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! SET PARAMETERS IRET=0 MP=IPOPT(1) IF(MP.EQ.-1.OR.MP.EQ.0) MP=50 IF(MP.LT.0.OR.MP.GT.100) IRET=32 PMP=MP*0.01 ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! SAVE OR SKIP WEIGHT COMPUTATION IF(IRET.EQ.0.AND.(KGDSO(1).LT.0.OR.ANY(KGDSI.NE.KGDSIX).OR.ANY(KGDSO.NE.KGDSOX))) THEN ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! COMPUTE NUMBER OF OUTPUT POINTS AND THEIR LATITUDES AND LONGITUDES. IF(KGDSO(1).GE.0) THEN CALL GDSWZD(KGDSO, 0,MO,FILL,XPTS,YPTS,RLON,RLAT,NO,CROT,SROT) IF(NO.EQ.0) IRET=3 ENDIF ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! LOCATE INPUT POINTS ALLOCATE(DUM1(NO)) ALLOCATE(DUM2(NO)) CALL GDSWZD(KGDSI,-1,NO,FILL,XPTS,YPTS,RLON,RLAT,NV) DEALLOCATE(DUM1,DUM2) IF(IRET.EQ.0.AND.NV.EQ.0) IRET=2 CALL GDSWZD(KGDSI, 0,MI,FILL,XPTI,YPTI,RLOI,RLAI,NV,CROI,SROI) ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! ALLOCATE AND SAVE GRID DATA KGDSIX=KGDSI KGDSOX=KGDSO IF(NOX.NE.NO) THEN IF(NOX.GE.0) DEALLOCATE(RLATX,RLONX,CROTX,SROTX,NXY,WXY,CXY,SXY) ALLOCATE(RLATX(NO),RLONX(NO),CROTX(NO),SROTX(NO), & NXY(2,2,NO),WXY(2,2,NO),CXY(2,2,NO),SXY(2,2,NO)) NOX=NO ENDIF IRETX=IRET ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! COMPUTE WEIGHTS IF(IRET.EQ.0) THEN CALL IJKGDS0(KGDSI,IJKGDSA) !$OMP PARALLEL DO PRIVATE(N,XIJ,YIJ,IJX,IJY,XF,YF,J,I,WX,WY,CM,SM) DO N=1,NO RLONX(N)=RLON(N) RLATX(N)=RLAT(N) CROTX(N)=CROT(N) SROTX(N)=SROT(N) XIJ=XPTS(N) YIJ=YPTS(N) IF(XIJ.NE.FILL.AND.YIJ.NE.FILL) THEN IJX(1:2)=FLOOR(XIJ)+(/0,1/) IJY(1:2)=FLOOR(YIJ)+(/0,1/) XF=XIJ-IJX(1) YF=YIJ-IJY(1) WX(1)=(1-XF) WX(2)=XF WY(1)=(1-YF) WY(2)=YF DO J=1,2 DO I=1,2 NXY(I,J,N)=IJKGDS1(IJX(I),IJY(J),IJKGDSA) WXY(I,J,N)=WX(I)*WY(J) IF(NXY(I,J,N).GT.0) THEN CALL MOVECT(RLAI(NXY(I,J,N)),RLOI(NXY(I,J,N)), & RLAT(N),RLON(N),CM,SM) CXY(I,J,N)=CM*CROI(NXY(I,J,N))+SM*SROI(NXY(I,J,N)) SXY(I,J,N)=SM*CROI(NXY(I,J,N))-CM*SROI(NXY(I,J,N)) ENDIF ENDDO ENDDO ELSE NXY(:,:,N)=0 ENDIF ENDDO ENDIF ! IS IRET 0? ENDIF ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! INTERPOLATE OVER ALL FIELDS IF(IRET.EQ.0.AND.IRETX.EQ.0) THEN IF(KGDSO(1).GE.0) THEN NO=NOX DO N=1,NO RLON(N)=RLONX(N) RLAT(N)=RLATX(N) CROT(N)=CROTX(N) SROT(N)=SROTX(N) ENDDO ENDIF !$OMP PARALLEL DO PRIVATE(NK,K,N,U,V,W,UROT,VROT,J,I) DO NK=1,NO*KM K=(NK-1)/NO+1 N=NK-NO*(K-1) U=0 V=0 W=0 DO J=1,2 DO I=1,2 IF(NXY(I,J,N).GT.0) THEN IF(IBI(K).EQ.0.OR.LI(NXY(I,J,N),K)) THEN UROT=CXY(I,J,N)*UI(NXY(I,J,N),K)-SXY(I,J,N)*VI(NXY(I,J,N),K) VROT=SXY(I,J,N)*UI(NXY(I,J,N),K)+CXY(I,J,N)*VI(NXY(I,J,N),K) U=U+WXY(I,J,N)*UROT V=V+WXY(I,J,N)*VROT W=W+WXY(I,J,N) ENDIF ENDIF ENDDO ENDDO LO(N,K)=W.GE.PMP IF(LO(N,K)) THEN UROT=CROT(N)*U-SROT(N)*V VROT=SROT(N)*U+CROT(N)*V UO(N,K)=UROT/W VO(N,K)=VROT/W ELSE UO(N,K)=0. VO(N,K)=0. ENDIF ENDDO ! NK LOOP DO K=1,KM IBO(K)=IBI(K) IF(.NOT.ALL(LO(1:NO,K))) IBO(K)=1 ENDDO IF(KGDSO(1).EQ.0) CALL POLFIXV(NO,MO,KM,RLAT,RLON,IBO,LO,UO,VO) ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ELSE IF(IRET.EQ.0) IRET=IRETX IF(KGDSO(1).GE.0) NO=0 ENDIF ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - END SUBROUTINE POLATEV0